Estimation d'un ratio Albumine/Créatinine urinaire à partir d'un ratio Protéine/Créatinine urinaire au départ de mesures réalisées sur un même échantillon :

Validation d'équations

Guillaume Résimont¹, Laura Vranken², Etienne Cavalier², Pierre Delanaye^{1,3}

- ¹ Néphrologie, Dialyse, Transplantation, Université de Liège, CHU Sart Tilman, Liège, Belgique
- ² Département de Chimie Clinique, Université de Liège, CHU Sart Tilman, Liège, Belgique
- ³ Département de Néphrologie-Dialyse-Aphérèse, Hôpital Universitaire Carémeau, Nîmes, France

CONTEXTE

La maladie rénale chronique est principalement définie par l'appréciation du débit de filtration glomérulaire et de l'albuminurie. Ces variables sont également utilisées pour apprécier le risque cardiovasculaire et de maladie rénale terminale. L'albuminurie est cependant souvent indisponible dans le dossier médical. Weaver & al. et Sumida & al. ont développé des équations qui estiment le ratio albumine/créatinine (ACR) au départ du ratio protéine/créatinine (PCR). Nous évaluons la performance de ces équations dans notre population.

METHODES ***** Étude Monocentrique (CHU de Liège) Rétrospective Weaver & al. Sumida & al. Roche Cobas Abbott Alinity 4-6 365 jours 306 jours (Mai 2018-Mai 2019) (Mai 2019- Mars 2020) l seul échantillon par 1 seul échantillon par patient avec mesure patient avec mesure simultanée ACR & PCR simultanée ACR & PCR N = 2633 (population gén) N= 2386 (population gén) F 41,2% F 43,03% 63 ans 64 ans 78% 74%

	Catégories ACR						
	A1	A2	A3				
	<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol				
ACRm							
Roche Cobas Abbott Alinity	65,6% 64,2%	25,5% 25,5%	8,8% 10,3%				
Weaver ACRe Roche Cobas Abbott Alinity	64,7% 62,5%	25,7% 25,8%	9,6% 11,7%				
Sumida ACRe Roche Cobas Abbott Alinity	65,9% 64,7%	25% 24,1%	9% 11,1%				

FORCES & LIMITA	TIONS			
Forces	2 analyseurs différents	2 équations	Même échantillon ACRm PCRm	Pour des études rétrospectives
Limitations	Étude rétrospective Monocentrique	75% diabétiques Weaver 47% Sumida 56%	Pas de sédiment concomitant	Déconseillé pour le suivi clinique

RESULTATS							
	İ	Concordance catégorie KDIGO ACRe/ACRm Weaver	Concordance catégorie KDIGO ACRe/ACRm Sumida				
Roche Cobas	2633	87% (2284)	86% (2276)				
Abbott Alinity	2386	89% (2125)	88,5% (2110)				

Patients discordants:

aver		Mesuré A1	Mesuré A2	Mesuré A3			Mesuré A1	Mesuré A2
Roche	Estimé A1	X	5% (137)	0% (0)	Abbott	Estimé A1	X	4% (90)
Cobas	Estimé A2	6% (160)	X	1% (16)	Alinity	Estimé A2	5% (130)	X
(n=2633)	Estimé A3	0,08% (2)	1% (34)	X	(n=2386)	Estimé A3	0% (0)	2% (37)

umida		Mesuré A1	Mesuré A2	Mesuré A3
Roche	Estimé A1	X	6% (158)	0% (0)
Cobas	Estimé A2	6% (148)	X	1% (23)
(n=2633)	Estimé A3	0,08% (2)	1% (26)	X

Légende : En jaune, les faux positifs; En rouge, les faux négatifs

Performances des équations:

	A1-	-A2 d 30mg/g	A2-A3 Threshold 300mg/g		
\sum	ACRm/ACRe A1-A2	ACRm/ACRe A1-A2	ACRm/ACRe A2-A3	ACRm/ACRe A2-A3	
Weaver	(Roche Cobas)	(Abbott Alinity)	(Roche Cobas)	(Abbott Alinity)	
Sensibilité	84,8%	89,4%	93,1%	98,4%	
Spécificité	90,6%	91,5%	98,5%	98,3%	
VPP	82,5%	85,4%	85,8%	86,7%	
VPN	91,9%	93,9%	99,3%	99,8%	
AUC	0,96	0,97	0,99	0,99	

	A1- Threshole	·A2 d 30mg/g	A2-A3 Threshold 300mg/g		
\sum	ACRm/ACRe A1-A2	ACRm/ACRe A1-A2	ACRm/ACRe A2-A3	ACRm/ACRe A2-A3	
Sumida	(Roche Cobas)	(Abbott Alinity)	(Roche Cobas)	(Abbott Alinity)	
Sensibilité	82,6%	85,7%	90,1%	94,7%	
Spécificité	91,3%	92,9%	98,8%	98,5%	
VPP	83,3%	87%	88,2%	87,9%	
VPN	90,9%	92,1%	99%	99,4%	
AUC	0,95	0,97	0,99	0,99	

CONCLUSIONS

Bonne concordance entre l'ACRe et l'ACRm dans notre population, avec les 2 équations et les 2 analyseurs

- Pas de différence de performance des équations (courbes ROC)
- Aucun patient avec un ACR mesuré A3 n'a été classé A1 avec les équations d'estimation
- La valeur prédictive négative est donc excellente
- L'ACR doit être *mesuré* quand souhaité en **pratique clinique**
- Une <u>estimation</u> de l'ACR est raisonnablement obtenue à partir de l'équation de Weaver & al. et de Sumida & al. et peut être utilisée à des fins de **recherche rétrospective**